On an inequality of Diananda. Part III

نویسنده

  • Peng Gao
چکیده

Let Mn,r(x) be the generalized weighted means Mn,r(x) = ( ∑n i=1 qix r i ) 1/r , where Mn,0(x) denotes the limit of Mn,r(x) as r → 0+, x = (x1,x2, . . . ,xn), and qi > 0 (1≤ i≤ n) are positive real numbers with ∑n i=1 qi = 1. In this paper, we let q =minqi and always assume n≥ 2, 0≤ x1 < x2 < ··· < xn. We define An(x)=Mn,1(x), Gn(x)=Mn,0(x),Hn(x)=Mn,−1(x) and we will writeMn,r forMn,r(x),An forAn(x), and similarly for othermeans when there is no risk of confusion. For real numbers α,β and mutually distinct numbers r, s, t, we define

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On an Inequality of Diananda, Iii

We extend the results in part I, II on certain inequalities involving the generalized power means.

متن کامل

On an inequality of Diananda. Part II

Let Pn,r(x) be the generalized weighted means: Pn,r(x) = ( ∑n i=1 qix r i ) 1/r , where Pn,0(x) denotes the limit of Pn,r(x) as r → 0+, x = (x1,x2, . . . ,xn) and qi > 0 (1 ≤ i ≤ n) are positive real numbers with ∑n i=1 qi = 1. In this paper, we let q = minqi and always assume n≥ 2, 0 ≤ x1 < x2 < ··· < xn. We defineAn(x) = Pn,1(x),Gn(x) = Pn,0(x),Hn(x) = Pn,−1(x), and we will write Pn,r for Pn,...

متن کامل

On an Inequality of Diananda

where Pn,0(x) denotes the limit of Pn,r (x) as r → 0+ and where qi > 0, 1≤ i≤n, are positive real numbers with ∑n i=1qi = 1 and x = (x1,x2, . . . ,xn). In this note, we let q =minqi and always assume n≥ 2 and 0≤ x1 <x2 < ···<xn. We define An(x) = Pn,1(x), Gn(x) = Pn,0(x), and Hn(x) = Pn,−1(x) and we will write Pn,r for Pn,r (x), An for An(x), and similarly for other means when there is no risk ...

متن کامل

Some Results on facets for linear inequality in 0-1 variables

The facet of Knapsack ploytope, i.e. convex hull of 0-1 points satisfying a given linear inequality has been presented in this current paper. Such type of facets plays an important role in set covering set partitioning, matroidal-intersection vertex- packing, generalized assignment and other combinatorial problems. Strong covers for facets of Knapsack ploytope has been developed in the first pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006